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ORIGINAL STUDY

Dynamic Analysis and Experimental Verification of
Flexible Unbalanced Rotors Supported by Two
Identical Journal Bearings

Omar Ahmed a, Hussein Sayed a, Tamer Ahmed El-Sayed a,b,*

a Department of Mechanical Design, Faculty of Engineering, Mataria, Helwan University, Egypt
b School of Engineering, UH Hosted by Global Academic Foundation, Cairo, Egypt

Abstract

Background: Analyzing the vibrations for rotor-bearing systems is a critical issue in the field of rotor dynamics. It is
crucial to identify rotary machine vibrations, behaviors, and stability conditions. The main causes of vibration in rotating
machinery are unbalanced masses, misalignment, mechanical looseness, shaft cracks, and other defects.
Methods: This paper investigates the experimental verification of a theoretical model, using a steel shaft with a disc set

at the midpoint, supported by two symmetric fluid film bearings. The study examines the effect of unbalance on the
dynamic behavior of the rotor and its vibration characteristics. The experimental investigation involved setting up a test
rig, installing the journal bearing and rotor, and measuring relevant parameters. The theoretical analysis employed the
solution of the Reynolds equation to determine the bearing coefficients, which were then modeled as a function of the
Sommerfeld number using a polynomial fit. A finite element model with a consistent matrix formulation was used to
simulate the shaft, including the external load and four degrees of freedom per node.
Results: The theoretical model was validated against experimental results in both the time and frequency domains,

considering the effect of unbalanced masses. The results are presented using orbit plots, system responses, and fast
fourier transform (FFT) spectra. The vibration analysis results show the whirl phenomena before it becomes uncon-
trollable and leads to self-excited vibration.
Conclusions: The theoretical model based on nonlinear analysis was in agreement with the experimental analysis for all

rotational speed ranges. The resonant speeds of 5107 rpm and 5850 rpm were observed in both the theoretical and
experimental studies, respectively. However, a noticeable discrepancy was observed when the speed exceeded the
threshold speed in both the first and second-order theoretical analyses.

Keywords: Finite-element model, Hydrodynamic bearing forces, Linear and nonlinear analysis, Nonlinear-bearing
coefficients, Rotor dynamic model

1. Introduction

H igh-speed pumps, turbines, hydraulic turbo-
chargers, machine tools, and automobiles are

some of the industrial applications that use rotor-
bearing systems with high rotating speeds. Research
has identified excessive vibration and instability as
fundamental challenges in the rotor dynamics of
such turbomachinery. Furthermore, these studies
emphasize the critical role of varying rotor speeds in

influencing rotor-bearing behavior and performance
(Mourelatos, 2001; San Andr�es, 2006; El-Sayed and
Farghaly, 2016; El-Sayed and Fatah, 2016). The vi-
bration and stability of rotor-bearing systems affect
the performance of machinery and equipment. As
the rotational speed and load increase, it becomes
more important to reduce vibration in a rotor-
bearing system. For example, unbalance and insta-
bility of the rotor can cause excessive wear and even
catastrophic failures. Therefore, it is essential to
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ensure stability and minimize vibration for the per-
formance, efficiency, and structural integrity of these
rotating machines. High-speed rotors pose several
challenges for design and operation, such as rotor
balancing, which is necessary to reduce unbalanced
forces and moments that can cause vibration,
ensuring mechanical stability and integrity, and
addressing vibration issues. Material selection,
lubrication systems, and advanced engineering
techniques are used to overcome these challenges
and ensure the safe and efficient operation of high-
speed rotors. Vibration analysis and modes for ro-
tors involve studying the natural frequencies and
mode shapes of the rotor system. This information is
vital for understanding how the rotor responds to
external forces. Moreover, managing rotor vibration
is a critical aspect of rotor-bearing system reliability.
By identifying the root causes, implementing
appropriate mitigation measures, monitoring vibra-
tion levels over time, and using fast fourier trans-
form (FFT) spectrum analysis. Unbalanced rotors
can cause harmful vibrations in rotating machinery,
which has been extensively investigated by both
theoretical and experimental research in the past
decades. Several reviews have summarized the
literature on this topic (Flack and Rooke, 1980;
Hashimoto and Wada, 1990; Gupta et al., 1993; Xu
and Marangoni, 1994; Zhao et al., 1994; De Rosa and
Rossi, 1996; Lee and Van Moorhem, 1996; Kreu-
zinger-Janik and Irretier, 2000).

1.1. Analysis of stability and dynamic behavior in
unbalanced rotor-bearing systems

To study the instability and behavior of rotor-
bearing systems, two research methods are
commonly used. One is to perform experimental
studies, either in a laboratory setting or in real in-
dustrial applications (Al Yahyai and Mba, 2014). The
other is to use mathematical models and analytical
analysis, based on the system's equation of motion,
to identify the features of rotor-bearing systems
(Braut et al., 2008; Shen et al., 2008; Zhang et al.,
2009; Meybodi et al., 2012; Taplak and Parlak, 2012;
Zanarini and Cavallini, 2012; Jalali et al., 2014; €Ozer
et al., 2015; Perez and Rodríguez, 2021). Adiletta
et al. (1997) conducted a study on the nonlinear
behavior of an unbalanced rigid rotor, which was
supported by two symmetrical plain journal bear-
ings. This study is divided into parts: the first part
involves theoretical analysis, and the other part in-
volves experimental verification of theoretical re-
sults. The comparison pointed out that the

experimental results and the theoretical model
analysis agreed well. Sinha et al. (2004) proposed a
method to estimate the rotor unbalance and
misalignment during operation. They verified the
method using an experimental setup. Driot et al.
(2006) studied the dynamic behavior of a flexible
rotor system theoretically and verified their results
experimentally. The numerical and analytical model
results are favorably compared with the experi-
mental results. Balducchi et al. (2014) demonstrated
an experimental study on an unbalanced rigid rotor
of Pelton turbines supported by two identical aero-
dynamic foil bearings. The study presents the
nonlinear behavior of the rotor, synchronous, and
subsynchronous vibrations, and depicts the water-
fall diagrams. The experimental results are
compared with very simplified theoretical pre-
dictions based on certain assumptions and showed a
good agreement. Zhu et al. (2020) used a finite-
element method based on the Timoshenko beam
element to study the dynamic analysis of a flexible
rotor supported by ball bearings, considering the
influences of unbalanced force, nonlinear-bearing
force, and rotor gravity. The comparison between

Nomenclature

Symbol Definition
Cab;Cabc Dimensionless bearing damping coefficients in (X-

Y) coordinates: where, a, b, c ¼ X, Y
Kab;Kabc Dimensionless bearing stiffness coefficients in (X-

Y) coordinates: a, b, c ¼ X, Y
Fx; Fy Bearing forces (N)
½M� Mass matrix of the element
P0 Dimensionless steady-state pressure
PX;PY;PX0 ;PY0 ;PXX;PXY Gradient pressure in X-Y coordinate

PYY;PX0Y;PY0X;PXX0 ;PYY0

Xj;Yj;Xd;Yd Transverse motion of journal and disk
qx qy Rotations affected by bending deformation
[G] Gyroscopic matrix
[K� Stiffness matrix of the element
c Radial Clearance
H Dimensionless fluid film thickness. H ¼ h

c
h Fluid film thickness (m)
L Length of fluid film bearing (m)
P Dimensionless pressure of the fluid film P ¼

p
6mU

�
c
R

�2
p The pressure of fluid film (N/m2)
R Radius of the journal bearing. (m)
Wb The bearing load (N)
X, _X, €X Dimensionless displacement, velocity, and accel-

eration in Cartesian coordinates
Z Shaft coordinate in axial direction
3 Eccentricity ratio. 3 ¼ e

c
m Viscosity of the fluid (Ns/m2)
r Density of the fluid (kg/m3)
U Shaft speed

128 O. Ahmed et al. / Trends in Advanced Science and Technology 1 (2024) 127e158



theoretical and experimental results showed a small
percentage of error of less than 10%. Parmar et al.
(2020) studied the effect of unbalance on a rotor
supported by two self-align ball bearings. They
established a mathematical model to predict the
nonlinear behavior of the rotor under different shaft
speeds. They observed that the shaft rotational
speed and radial load have a significant effect on the
system's periodicity. They validate the simulated
results of the analytical model with an experimental
test-rig setup. Li et al. (2021) demonstrated a rotor-
bearing system involving multidisk bolted joints.
These joints are subjected to moments and unbal-
anced forces during operation. They used bifurca-
tion diagrams and trajectory plots to study the
rotor's stability and vibration characteristics. Finally,
they used experimental rotor dynamic responses to
verify their theoretical results. Briend et al. (2021)
focused on studying the effect of mass and unbal-
anced forces on parametric rotor instability and
dynamic behavior. The analysis of the predicted
results was achieved in terms of shaft trajectories
and FFT spectrums, and permitted experimental
validation for the mathematical model.
Miraskari et al. (2018a) and Miraskari et al. (2018b)

modeled bearing forces with linear and nonlinear-
bearing dynamic coefficients to investigate the
flexible rotor instability. They predicted bifurcation
and orbit plots for speeds below and above
threshold speed. In addition, they used the expir-
emental results of Wang and Khonsari (2006).
Huang et al. (2022) utilized a novel double-layer
flexible support tilting pad bearing to reduce the
undesired vibrations of the rotor-bearing system
and improve the stability. Experiments were carried
out to investigate the vibration characteristics of the
rotor. The results proved that double-layer flexible
support tilting pad bearing is excellent in vibration
attenuation. Wang et al. (2022) studied the effect of
unbalaced orientation turbochargers installed on
automobile engines. The results demonstrate that
the vibration characteristics are significantly influ-
enced by the unbalanced orientation. To reduce
dynamical variations between turbochargers of the
same kind and to provide a high-efficiency turbo-
charger with low vibration and noise, it is suggested
to keep the unbalanced orientation in the range of
0e60�. Yin et al. (2021) conducted a nonlinear anal-
ysis to study the instability and dynamic character-
istics of an unbalanced rotor supported by aerostatic
journal bearings. It is demonstrated that the rotor
mass has a significant impact on the dynamic re-
sponses of the rotor. The findings are useful for

designers in creating aerostatic bearing rotor sys-
tems with the required operating speed and stabil-
ity. El-Sayed and Sayed (2022), El-Sayed and
Farghaly (2016), El-Sayed et al. (2023), Elsayed et al.
(2023), Sayed and El-Sayed (2022a, 2022b), and
Sayed et al. (2023) focused on studying the insta-
bility and bifurcation plots for a jeffcott rotor sup-
ported by two identical journal bearings. The results
proved that third-order bearing coefficients are
effectively used in the rich dynamics of rotor-
bearing systems.

1.2. Bearing dynamic coefficient calculations

Elsayed et al. (2023) calculated the bearing co-
efficients based on first-order and second-order
analyses for an inclined pad hydrodynamic thrust
bearing using the finite-difference method in polar
coordinates. The results showed the effect of
changing misalignment angle, shaft rotational
speed, and film thickness on the dynamic co-
efficients. Ahmed et al. (2023) established a method
for analyzing the behavior of an elastic rotor sup-
ported by two symmetrical hydrodynamic journal
bearings. The bearing coefficients based on second-
order analysis were calculated using the small
perturbation approach, and the shaft was simulated
using a finite-element model with a consistent ma-
trix formulation. Tofighi-Niaki and Safizadeh (2023)
proposed a turbo-dynamic model of the rotor-
bearing system to assess the effect of wear and
instability on rotor behavior. The results showed
that the thermal and dynamic conditions affect the
dynamic characteristics of the rotor. Katini�c et al.
(2023) analyzed the dynamic behavior of a rotor-
bearing system with two symmetrical disks located
between the plain bearings. They studied the effect
of gyroscopic mass on the natural frequencies of the
system. Kartheek et al. (2023) analyzed the re-
sponses of a flexible shaft with three disks sup-
ported on hydrodynamic journal bearings. They
developed Campbell plots to identify the shaft's
critical speeds. They also verified the analytical
analysis using an experimental test rig. Lu et al.
(2023) investigated the influence of eccentricity and
bearing clearance on the rotor-bearing system's
dynamic performance. They concluded that bearing
clearance and eccentricity affect the nonlinear-
bearing forces of the system, which in turn cause the
system to exhibit rich and complex dynamic be-
haviors. Mutra and Srinivas (2022) developed a
comprehensive mathematical model for a turbo-
charger rotor system. Their model incorporates the
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complexities of a nonuniform, flexible, stepped
turbo-compressor shaft supported by floating ring
bearings. This model facilitated dynamic analysis
and optimization of the rotor system, aiming to
enhance its performance and durability under
exhaust emission loads. The study also investigated
critical vibration characteristics and addressed
common failure modes such as bearing wear,
impeller-casing rubs, and shaft cracks. In a subse-
quent work, Mutra and Srinivas (2020) presented an
efficient methodology to predict reliable stiffness
and damping parameters for floating ring bearings
supporting a dual disk rotor system. This method
achieved accurate results with minimal computa-
tional effort and algorithmic complexity. Their
findings demonstrate the effectiveness of the opti-
mization-based approach in improving the under-
standing and optimization of cylindrical floating
ring journal bearings used in automotive turbo-
chargers. Finally, Mutra and Srinivas (2021) con-
ducted a comprehensive hydrodynamic analysis of a
high-speed turbocharger rotor-bearing system with
floating ring bearings, focusing on transient oper-
ating conditions. Their analysis considered tem-
perature-dependent lubricant viscosity and film
clearances to calculate pressure distributions and
dynamic bearing forces. This approach allowed for a
deeper understanding of the system's dynamic
behavior and stability issues during critical start-up
and shut-down phases. The study highlights the
importance of incorporating temperature-depen-
dent viscosity and film clearances for accurate dy-
namic analysis of turbocharger rotor-bearing
systems.

1.3. Key objectives and novel contributions of the
paper

This paper presents an analytical model of a
flexible rotor supported by two symmetrical journal
bearings, using the finite-element method based on
the Euler Bernoulli beam theory. The equations of
motion are derived from Hamilton's principle and
solved numerically. The theoretical analysis is vali-
dated experimentally for both time and frequency
domains, as well as orbit plots. Furthermore, a
simple study is conducted to discuss the effect of
unbalanced masses and changes in shaft rotational
speeds on the nonlinear response and behavior of
the rotor. Previous research highlights the signifi-
cance of analyzing rotor dynamics supported by
journal bearings using bearing coefficients. Some

studies have employed these issues using linear
bearing coefficients, while others incorporated both
linear and nonlinear models. However, a key limi-
tation of this approach is the variability of bearing
coefficients with the applied static load and the
bearing parameters. The novelty of this paper is in
solving this drawback by introducing a technique
based on polynomial fitting. This enables the
investigation of the stability of a rotor supported by
two journal bearings using orbit plots and bifurca-
tion diagrams. The paper is organized as follows:
Section 2 introduces the theoretical model and the
equations of motion of the rotor system. Section 3
describes the experimental setup and the test rig
used to obtain the experimental data. Section 4
compares the numerical results with the experi-
mental signals and discusses the main findings.
Section 5 summarizes the main conclusions and
contributions of this paper.

1.4. Theoretical model and equation of motion

The system equation for the rotor-bearing system
shown in Fig. 1a, b is derived through mathematical
analysis utilizing the finite-element model. Fig. 2
illustrates a model of a rotating shaft, which com-
prises four elements. Each element is defined by
two nodes located at their respective ends. The shaft
possesses a straight configuration, uniform proper-
ties, and a round cross-section. Each element has
two nodes, leading to a total of eight degrees of
freedom per element. Both transverse motion and
rotation around the x and y-axes are permitted at
each node.
The system displacement vector is X ¼

[x1 y1 qx1 qy1 x2 y2 qx2 qy2�.

1.5. System equation of motion

By utilizing Hamilton's principle, the kinetic and
potential energy of each element can be defined in
matrix form using its nodal variables. This approach
allows the formulation of the system's equation of
motion using the finite-element method:

Z t2

t1
ðdN� dPþdWÞdt¼0 ð1Þ

In this context, N denotes the kinetic energy, while
P stands for the potential energy, and W signifies
the work performed by external nodal forces (NPÞ.
After formulating the kinetic energy, elastic strain
potential energy, and work done in Equation (1)
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(Laha, 2010), a small element of volume for the
continuous system is considered. Lagrangian co-
ordinates are employed. Finally, the equation of
motion for the system is formulated in terms of
displacement, as shown in Equation (2) (Baddour,
2008).

½M� €Xþð½G�Uþ½C� Þ _Xþ ½K�X¼ F ð2Þ

where ½K�; ½G�, ½C�; and ½M� are the stiffness, gyro-
scopic, damping, and total mass matrices of the
shaft, respectively, see Appendix B. The stiffness
and damping coefficients of the bearings are illus-
trated as a function of rotational speed in Fig. D.1,
see Appendix D. X represents the displacement
vector. The total mass, gyroscopic mass, damping,
and stiffness matrices are assembled for each
element of the rotating shaft using 8 � 8 matrices. F
is the force vector, constituted by hydrodynamic
bearing forces (Fx, Fy), and the rotor's gravitational
load at the first and end nodes of the elements of the
shaft. The system response can be determined by
solving the system equations of motion using
MATLAB and the direct integration method
(ODE15S). The bearing force derivations are illus-
trated in Appendix A. Fig. 3 depicts the flowchart
detailing the procedures for both static and dynamic
calculations in theoretical models.

Figure 4 shows the corresponding mode shapes
for the first four lateral natural frequencies for the
studied rotor-bearing system. Fig. 5 presents a
Campbell diagram designed to show the system's
natural frequency with rotor rotational speeds. The
Campbell diagram can be drawn from theoretical/
numerical analyses as well as through the actual
measurement from the test rig. Critical speeds of the
rotor system are determined by estimating eigen-
values for the free vibration case with the rotor-
bearing system. The first critical speed of the rotor
system is identified as 5047 rpm with a natural fre-
quency of 84.12 Hz. The second critical speed occurs
at ⁓32 455 rpm with a frequency of 540.91 Hz. In
addition, it displays the safe operating range for
machines.

2. Experimental setup and test rig description

Figures 6 and 7 present authentic photographs of
the experimental test rig used in the study, while a
schematic diagram of the experimental setup is
illustrated in Fig. 8. The shaft, whose geometrical
and physical parameters are detailed in Table 1,
is prominently featured. The steel shaft is sup-
ported by two fluid film hydrodynamic journal
bearings, exhibiting a slenderness ratio of 2.5. The
physical dimensions and parameters of journal
bearings are listed in Table 2. In Fig. 7, it can be
observed that pressurized fluid is supplied to the
hydrodynamic journal bearing through a static
pump. Moreover, the rotor disk is precisely posi-
tioned at the shaft mid-span. A three-phase AC
electric motor, driven by a variable frequency
inverter, is used to change the rotation of the shaft

Fig. 1. Elastic rotor-bearing system: (a) schematic of the system and (b) cartesian coordinate of the system.

Fig. 2. Number of elements and nodes for the rotating shaft.
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at varying speed ranges, ranging from 10 to
6000 rpm. For obtaining the shaft x and y, two eddy
current probes of the FK-452F model are used.
These probes, with a diameter of 16 mm, are
securely mounted on a steel frame in a

perpendicular configuration. When eddy current
probes are brought close to a conductive target, the
magnetic field induces eddy current in the target
material. These eddy currents, in turn, generate a
magnetic field that opposes the original magnetic

Fig. 3. A flowchart illustrates the analysis used to derive theoretical results.
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field from the coil. This opposition alters the
impedance of the coil, which can be measured and
converted into a displacement measurement. The
signals from the probes are collected and converted
using an NI card USB 6216. The data was collected
at a sampling rate of 12 800, resulting in a total of
50 031 sampling points. Specifically, the vibration
data from the shaft was extracted, with a focus on
the initial 10 s of operation. This time frame was
chosen to ensure the dataset's integrity and reli-
ability. The system vibration responses are
measured by four accelerometers with different
sensitivities. Two accelerometers are the ICP-
352A60 model, with a sensitivity of 1.02 mV/m/s2,
and the other two are the industrial ICP-603C01
model, with a sensitivity of 10.2 mV/m/s2. The ac-
celerometers are connected to an NI 9231 sound
and vibration module, which is mounted on a
Compact-Rio system. The Compact-Rio system
transfers the collected and digitized signal to the
computer, where the LabVIEW software processes
it. For a detailed explanation of the parameters of
the instruments and equipment, see Table 3.

3. Theoretical and experimental results

This section presents the results of theoretical and
experimental analyses of the rotor-bearing orbit

plots and responses. The theoretical analysis uses
the bearing forces calculated from the linear and
nonlinear coefficients, as well as the nonlinear-
bearing forces obtained directly from solving the
Reynolds equation. The experimental analysis uses
the data collected by LabVIEW from the test rig.
Moreover, the section demonstrates the startup and
shutdown procedures for the test rig to determine
the natural frequencies of the system. Lastly, it
briefly examines the bifurcation and waterfall dia-
grams at bearing and disk locations, and the impact
of vibration on the rotor-bearing system at different
speeds.

3.1. Rotor orbit plots and response analyses

In this section, we investigate the theoretical re-
sults based on the finite-element model and the
experimental results from the buildup test rig,
including orbit plots and responses of the rotor-
bearing system. The dynamic characteristics of the
hydrodynamic journal bearing and rotor disk for all
studied cases are presented in Table 1, and the fluid
properties are detailed in Table 2. Here,
L=D ¼ 2:5; and Yd, Xd represent the vertical and
horizontal displacements at the disk position,
respectively. The first-order analysis predicts a
critical speed of 4150 rpm for the system. Below this

Fig. 4. The corresponding mode shapes for the first four lateral natural frequencies of the studied rotor-bearing system.
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speed, the system behaves steadily, but above this
speed, it becomes unstable and diverges. The
theoretical results are visually represented using
color-coded plots. The first-order analysis results,
denoted by the color blue, are typically displayed in
the first column of Figs. 9, 11, 13, and 15 and are
detailed in Table 4. The second-order analysis re-
sults, represented in black, are plotted in the second
column. Nonlinear analysis results are depicted in
red and can be found in the third column of the
figures. The bearing stiffness and damping co-
efficients were determined for both first-order and
second-order studies, as described in Ahmed et al.
(2023), and briefed in Ahmed et al. (2023). The so-
lution based on nonlinear-bearing forces is pre-
sented in the third column, and these bearing forces
are calculated by solving the Reynolds equation at
each time step. For experimental results, real mea-
surements are displayed in the first column (a) of
Figs. 10, 12, 14, and 16. The second column (b) il-
lustrates the real measurements after applying a
low-pass smooth filter to eliminate noise. The third
column (c) presents the responses of the studied

cases over time (time-domain) plots. Finally, the last
column (d) shows the frequencies of each case at the
operating speed. Figs. 9 and 10 panels (a), (b), and (c)
show theoretical and experimental orbit plots and
responses for the rotor-bearing system at different
speeds with a system unbalanced mass of
7.02 � 10�4 kg. Fig. 9 shows that all analyses provide
the same steady-state orbits and responses as indi-
cated in the panels of the first three columns. At
speeds less than the critical speed, a stable orbit was
created with different orbit radii of 0.041, 0.14, and
0.18 mm, respectively. The vibration response rep-
resents steady-state amplitude over time. As the
rotational speed increases gradually, the second-
order analyses differ in the orbit shape as shown in
Fig. 9 panels (f) and (j). For Fig. 10, the top row de-
picts the orbits and responses at an operational
speed of 1000 rpm, the middle row at 2000 rpm, and
the bottom row at 3000 rpm. All panels show a
stable rotor orbit in steady-state conditions with a
limit cycle radius of ⁓0.1 mm. Fig. 11 panels a, b, c,
and d illustrate the rotational speed of 4000 rpm and
unbalanced mass of 7.02 � 10�4 kg$m. The first-

Fig. 5. The Campbell diagram of the studied rotor-bearing system.
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order, second-order, and nonlinear analyses show
trajectories different in amplitude and shape as
depicted. Fig. 12 panels a, b, and c display the
experimental findings. The oil whip phenomenon
occurs when the whirling rotor passes through or
close to one of the critical speeds. This oil whip is a

destructive journal-bearing phenomenon. When the
speed increases to 5000 rpm as plotted in Fig. 11,
panels e and f, it shows an increase in the orbit
radius and the amplitude of vibration in the ana-
lyses based on the first-order and second-order ef-
fects. It indicates that the system is unstable and

Fig. 6. A photograph depicting the experimental test-rig utilized for testing the rotor, supported by two journal bearings.
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Fig. 7. A rear view photograph providing additional details and insights into the machine.

Fig. 8. Schematic diagram illustrating the test rig setup.
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begins to diverge, but in the nonlinear analysis, the
system displays acceptable agreement with the
experimental orbit in the second row of Fig. 12. The
amplitude and radius of the orbit for first-order and
second-order analyses decrease as depicted in
Fig. 11, panels (i to l), and the nonlinear analysis
displays good agreement in the amplitude and the
orbit shape with the experimental work presented
in the third row of Fig. 12. At a rotational speed of
6000 rpm, the third row of Fig. 12 shows that the
analyses based on the first-order and the second-
order have amplitudes and orbit radii smaller than
the case of 5000 rpm. This behavior has several
reasons: the first one is that the rotor has natural
frequencies that coincide with the operating speed
range. When the system operates near these reso-
nant frequencies, the response can be significantly

amplified. As the speed increases beyond the reso-
nant region, the response decreases. The second
reason is that the rotor-bearing system stiffness and
damping can also affect the response. At lower
speeds, the system may exhibit lower stiffness and
damping, resulting in higher responses. However,
as the speed increases, the stiffness and damping
effects become more dominant, leading to a
decrease in the response (Rao and Yap, 1995). To
study these cases and determine the system's nat-
ural frequencies, the equations were numerically
solved. The first natural frequency was recorded as
85.12 Hz, as shown in Table 5. Moreover, start-up
and shut-down processes were investigated to
obtain the natural frequencies of the system exper-
imentally, as displayed in Fig. 17. The first natural
frequency is observed to resonante with a rotational
speed of 5845 rpm. Fig. 12 illustrates the FFT plot
showing the subsynchronous peaks at low fre-
quency as a result of the mechanical looseness of
rotor-bearing system parts, and super-synchronous
at a frequency equal to 2X. This is pointed to an
excitation frequency close to the first critical fre-
quency. Fig. 18 shows a comparative study between
theoretical and experimental frequency spectra for
two rotational speeds and the results show good
agreement.
Figures 13 and 14 display the theoretical and

experimental trajectories and responses at rotational
speeds below the critical speed, with an increased
unbalanced mass totaling 8.6 � 10�4 kg$m. The
unbalanced mass was augmented by adding small
masses to threaded holes with a diameter of 5 mm
located on the rotor. The augmentation aimed to
study the effect of the added unbalanced masses on
the rotor-bearing system behavior. In Fig. 13 gives
the radius of the orbit and amplitude measure 0.13

Table 1. Rotor-bearing dynamic characteristics for simulation.

Parameters Value

Shaft diameter 20 mm
Rotating shaft length 0.5 m
Modulus of elasticity 2.0eþ11 Pa
Density 7850 kg/m3

Bearing radial clearance 250 mm
Bearing mass 3.35 kg
Disk mass 1.5 kg
Viscosity of lubricant 0.031 Pa$s
Slenderness ratio 2.5

Table 2. Parameters for the fluid film used in this work.

Parameters Value

Oil viscosity (Pa$s) 0.031
Supply oil temperature (�CÞ 25
Supply oil pressure (Mpa) 0.1
Oil type ISO-VG32

Table 3. Parameters of instruments and equipment.

Parameters Ranges Sensitivity Model

AC motor 1 Hp, 2850 rpm e AOI
Proximity transducers 0.5 mm: 5 mm from sensor tip 3.94 V/mm Eddy current probes FK-452F
Accelerometers ±4905 m/s2, 5: 60 000 Hz 1.02 mV/m/s2 ICP-352A60

±490 m/s2, 0.5 : 10,000 Hz 10.2 mV/m/s2 Industrial ICP-603C01
NI card 1 : 10 mV, 16 analog ports e NI card USB 62164
Compact RIO Sample rate 51.2 kS/s frequency

13.1072 MHz, 8 analog channels
3.7 ppm/�C, 22.4 ppm/�C NI 9231 sound and vibration

module
Power supply 0 : 30 V, 1.5 A e B & J Dual DC (P 301 5D)
Inverter 220 V: 240 V ± 10%, 1 ph/3 ph,

50 : 60 Hz ± 5%
e MOVITRAC LT E

e
Oil pump 0.1e1 bar,4.0 LPM, 15 V e Aqua head (HF-8367)
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and 0.15 mm at 1000 and 2000 rpm, respectively.
However, at 3000 rpm, the orbit radius increases to
0.37 mm. Fig. 14 illustrates that all panels in the top,
middle, and bottom rows exhibit the same steady-
state response, with an orbit radius of ⁓0.15 mm,
consistent with the discussion in Fig. 9.
Figures 15 and 16 provide detailed insights near

and above the critical speed. Fig. 15 shows that the
orbit radius increases to 0.41 mm in the first-order
analysis, 0.56 mm in the second-order analysis, and
0.84 mm in the nonlinear analysis when the shaft
rotational speed reaches 4000 rpm. As the system's
rotational speed continues to increase, it eventually
surpasses the first theoretical resonant speed of
5107 rpm as listed in Table 4. Consequently, the
system's vibration amplitude significantly increases,
followed by a decrease after exceeding the resonant
speed, as depicted in the third row of Fig. 15. Fig. 16

illustrates the speed increasing from 4000 to
6000 rpm, with the system's orbit plots gradually
expanding from a radius of 0.3 mm until reaching
the limit cycle with a radius of 0.5 mm at a speed of
6000 rpm. The experimental results exhibit accept-
able agreements with the theoretical results in the
orbit shapes across all cases but vary in amplitudes.
Upon comprehensive analysis, it becomes evident
that the nonlinear analysis aligns most closely with
the experimental results in terms of orbit limit circle
and amplitudes.

3.2. Monitoring of the experimental test rig startup
and shutdown process

This section introduces the vibration monitoring
during startup and shutdown of the test rig used to
measure the experimental natural frequencies of

Fig. 9. Theoretical results for orbit plots and responses of vertical displacement at the disk position with an unbalanced mass of 7.02 � 10�4 kg·m.
Panels (aed) represent cases at a shaft speed of 1000 rpm; panels (eeh) represent cases at a shaft speed of 2000 rpm, and panels (iel) represent cases
at a shaft speed of 3000 rpm.
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the studied rotor-bearing system, as illustrated in
Fig. 17 panels (a) and (c), respectively. Startup and
shutdown processes refer to the sequences of ac-
tions or procedures that occur when a rotor-
bearing system is powered down (shut down) and
then powered up (started up). These processes are
crucial for accurately determining the peak ampli-
tudes of the system (Hamdoon et al., 2012). The
highest amplitude corresponds to the first natural
frequency of the system, as depicted in the plots of
Fig. 17b and d. In Fig. 17b, the startup process re-
veals a first natural frequency of 97.45 Hz, corre-
sponding to 5847 rpm, while in Fig. 17d, the
shutdown process shows a first natural frequency
of 97.41 Hz, corresponding to 5844 rpm. Fig. 4 dis-
plays the theoretical first four mode shapes and the

corresponding natural frequency of the system.
The first natural frequency is 85.12 Hz (5107 rpm) as
listed in Table 5. By comparing the experimental
and theoretical first natural frequencies, it can be
concluded that the system's resonant speed occurs
when the speed is gradually increased from 5000 to
6000 rpm.

3.3. Bifurcation and waterfall diagrams for studied
cases

This section explores bifurcation analysis and
three-dimensional spectra for an unbalanced rotor
supported by two identical journal bearings, based
on second-order and nonlinear analyses. The study
was conducted at two locations: one at the disk

Fig. 10. Experimental results for orbit plots and responses of vertical displacement at the disk position with an unbalanced mass of 7.02 � 10�4 kg·m
at various shaft speeds; panel (a) shows the real orbit plots; panel (b) displays orbits with a smoothing filter; panel (c) exhibits time responses of
vertical displacement, and panel (d) presents FFT spectra. FFT, fast fourier transform.
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location and the other at the bearing location, as
depicted in Figs. 19e22. These figures illustrate
areas of high amplitude corresponding to increasing
shaft rotational speeds. The shaft speed was grad-
ually increased with a constant step of 200 rpm. The
rotor-bearing system under investigation was
exposed to unbalanced forces, a common occur-
rence in real-world applications, which induced
dynamic instability and affected its performance.
The product of the unbalanced masses and the
eccentric distance are m� e ¼ 7:02� 10�4kg$m and
8:6� 10�4kg$m, respectively.

Figure 19 panels (a) and (b) display bifurcation
and waterfall plots for the first case based on a
second-order analysis at the disk location. These
plots depict amplitude changes over a speed range
from 1000 to 6000 rpm, with significant changes
around 5350 rpm, indicated by the vertical red line.
When the unbalanced mass was increased to
8:6� 10�4kg$m, the system behavior did not show a
significant change, as evident in panels (c) and (d) of
the second row of Fig. 19. Fig. 20 panels (a), (b), (c),
and (d) demonstrates bifurcation and waterfall dia-
grams at the bearing location. Analytically, when

Fig. 11. Theoretical results for orbit plots and responses of vertical displacement at the disk position with an unbalanced mass of 7.02 � 10�4 kg·m.
Panels (aed) represent cases at a shaft speed of 4000 rpm; panels (eeh) represent cases at a shaft speed of 5000 rpm; and panels (iel) represent cases
at a shaft speed of 6000 rpm.
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the shaft rotates at one of its resonance speeds, the
steady-state limit cycle of the bearings exceeds the
clearance circle. The horizontal red lines in the
figure indicate the boundaries of the bearing's
clearance circle. While this phenomenon observed
in the bifurcation at the bearing location is practi-
cally impossible, the bifurcation and waterfall dia-
grams at both disk and bearing locations for the two
unbalanced masses exhibit similar behavior in
terms of amplitude and plot shape for second-order
analysis. Fig. 21 shows the results of the
nonlinear analysis for two unbalanced masses:
7:02� 10�4kg$m and 8:6� 10�4kg$m. Panels (a) and

(b) represent 7:02� 10�4kg$m case, and panels (c)
and (d) represent the 8:6� 10�4kg$m case. These
panels illustrate bifurcation and waterfall plots
depicting the behavior of the rotor-bearing system.
The plots show a good agreement with the second-
order analysis in terms of shape, with a notable in-
crease in the amplitude attributed to the added
unbalanced mass. This increase is primarily due to
the unbalanced mass added to the holes on the disk
surface at zero angles, as shown in Fig. 6, which
amplifies the centrifugal forces acting on the disk.
Figs. 19e22 panels b and d: waterfall diagrams for
both second-order and nonlinear analyses. Due to

Fig. 12. Experimental results for orbit plots and responses of vertical displacement at the disk position for various shaft speeds with an unbalanced
mass of 7.02 � 10�4 kg·m. Column (a) shows the real orbit plot; column (b) displays the orbit with a smooth filter; column (c) presents time responses
of vertical displacement; and column (d) exhibits the FFT spectrum. FFT, fast fourier transform.
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the simple design of journal bearings and the disk,
three-dimensional frequency domain features of
vibration signals are good for overall investigations.
For all studied cases, waterfall panels (b and d), the
amplitude peaks increase with the speed runup
until they reach almost the first critical frequency,
subsequently, the frequency spectrum of the
healthy operation becomes apparent, and the
amplitude of peaks decreases.

3.4. Vibration analyses for unbalanced rotors

Vibration due to rotor unbalance is a common
issue in rotating machinery, easily detectable and

correctable. Unbalanced rotors typically exhibit a
series of harmonics at running speeds in journal
bearings. The FFT spectrum of unbalance re-
sembles that of mechanical looseness, as the fre-
quencies of signals at different shaft speeds are
akin to those produced by mechanical looseness
(Scheffer and Girdhar, 2004). Even minor unbal-
ance or misalignment can lead to higher vibration
amplitudes. Fig. 23 shows the responses and FFT
spectrum for an unbalanced rotor operating at
speeds below the critical speed. The figures are
color-coded: red for 1000 rpm and blue for
2000 rpm. Signals from horizontal and vertical
sensors at two supporting hydrodynamic journal

Fig. 13. Theoretical orbit plots and responses of vertical displacement at the disk position with an unbalanced mass of 8.6 � 10�4 kgm. Panels (aed)
represent cases at a shaft speed of 1000 rpm; panels (eeh) represent cases at a shaft speed of 2000 rpm; and panels (iel) represent cases at a shaft
speed of 3000 rpm.
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bearings were analyzed. Vertical sensor ampli-
tudes are almost identical, while the horizontal
sensor near the motor exhibits a slightly lower
amplitude, attributed to minor misalignment and
unbalance, visually evident in panels (a, b, c, and
d) and also (i, j, k, and l). The FFT spectrum in
Figures (e, f, g, and h) and (m, n, o, and p) reveals
signs of mechanical looseness and minor rotor rub.
As the rotational speeds increase to 3000 rpm in
Fig. 24 panels (a, b, c, and d), vibration amplitudes
remain consistent. In panels (e, f, g, and h)
approaching the critical speed introduces notable
structural and mechanical looseness, with the

highest amplitude reaching 3X. Panels (i, j, k, and
l) and (m, n, o, and p) demonstrate speeds close to
the critical limit, where synchronous rotor
response (1X displacement at) peaks. Fig. 25aed
and (i, j, k, and l) for the time domain, and (e, f, g,
and h) and (m, n, o, and p) for the FFT spectrum
illustrate rotor run-up above the critical speed,
where synchronous and undesired vibration af-
fects the system Mechanical looseness and mis-
alignments are evident. The results emphasize the
importance of addressing rotor-bearing systems
near their first balance resonance. Operating at
these speeds exacerbates issues with unbalance

Fig. 14. Experimental orbit plots and responses of vertical displacement at the dis position for different shaft speeds with an unbalanced mass of
8.6 � 10�4 kg·m. Columns (a) show real orbit plots, (b) display orbits with a smooth filter, (c) depict time responses of vertical displacement, and (d)
illustrate the FFT spectra. FFT, fast fourier transform.
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Fig. 15. Theoretical orbit plots and responses of vertical displacement at the disk position with an unbalanced mass of 8.6 � 10�4 kg·m. For all cases,
(a, b, c, and d) represent cases at a shaft speed of 4000 rpm (e, f, g, and h) represent cases at a shaft speed of 5000 rpm, and (i, j, k, and l) represent
cases at a shaft speed of 6000 rpm.

Table 4. Studied cases for system trajectories and responses for unbalanced mass for the system equals 7.02 � 10�4 kg·m and another unbalanced
mass equals 8.6 � 10�4 kg·m, respectively.

Operating cases Operating speed (rpm) Sommerfeld number (S) Eccentricity ratio 3

Figs 6, 10a, b, c, d 1000 0.0617 0.557
Figs 6, 10e, f, g, h 2000 0.1235 0.317
Figs 6, 10i, j, k, l 3000 0.1852 0.215
Figs 7, 11a, b, c, d 4000 0.2469 0.170
Figs 7, 11e, f, g, h 5000 0.3086 0.047
Figs 7, 11i, j, k, l 6000 0.3704 0.216
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Fig. 16. Experimental orbit plots and responses of vertical displacement at the disk position with an unbalanced mass of 8.6 � 10�4 kg·m. For all
cases, column (a) shows a real orbit plot, column (b) displays orbits with a smooth filter, column (c) presents time responses of vertical displacement,
and column (d) shows the FFT spectra. FFT, fast fourier transform.

Table 5. The first two lateral natural frequencies for the studied rotor-bearing system at several rotational speeds.

Rotational speed (rpm) First mode N.F. (Hz) Second mode N.F. (Hz)

1000 �19.390 þ 84.028i �71.287 þ 503.21i
2000 �18.690 þ 84.056i �70.920 þ 508.26i
3000 �18.690 þ 84.056i �70.920 þ 508.26i
4000 �33.248 þ 84.480i �70.920 þ 508.26i
5000 �33.248 þ 84.480i �70.920 þ 508.26i
6000 �32.389 þ 84.986i �70.920 þ 508.26i
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Fig. 17. Startup and shutdown processes of the experimental test rig, panels (a) and (b) show the time domain and FFT spectrum for startup, while
panels (c) and (d) display the time domain and FFT spectrum for the shutdown process. FFT, fast fourier transform.

Fig. 18. Comparison between the theoretical and experimental results using FFT of two rotational speeds: panels (a) and (b) FFT spectrum for 2000 and
3000 rpm, respectively. FFT, fast fourier transform.
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Fig. 19. Bifurcation and waterfall plots for the rotor-bearing system based on second-order analysis at the disk location. Panels (a, c) depict bifurcation
diagrams, and panels (b, d) display three-dimensional spectrum diagrams for two unbalanced masses: 7:02x10�4 kg$m and 8:6x10�4 kg$m;

respectively.

Fig. 20. Bifurcation and waterfall plots for the rotor-bearing system based on second-order analysis at the bearing location. Panels (a, c) depict
bifurcation diagrams, and panels (b, d) display three-dimensional spectrum diagrams for two unbalanced masses: 7:02x10�4 kg$m and 8:6x10�4 kg$
m; respectively.
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Fig. 21. Bifurcation and waterfall plots for rotor-bearing system based on nonlinear analysis at the disc location. Panels (a, c) show bifurcation
diagrams, and panels (b, d) display three-dimensional spectrum diagrams for unbalanced masse 7.02�10^(-4) kg.m and 8.6�10^(-4) kg.m
respectively.

Fig. 22. Bifurcation and waterfall plots for the rotor-bearing system based on nonlinear analysis at the bearing location. Panels (a, c) illustrates
bifurcation diagrams, and panels (b, d) display three-dimensional spectrum diagrams for unbalanced masses 7:02�10^-4 kg.m and 8:6�10^-4 kg.m
respectively.
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Fig. 23. Experimental results of vibration response and FFT spectrum at the horizontal and vertical directions of bearing 1 and 2 at different shaft
speeds (1000, 2000 rpm). Time records in horizontal and vertical directions are shown in panels (aed) and (iel), while FFT spectra in horizontal and
vertical directions are displayed in panels (eeh) and (mep). FFT, fast fourier transform.
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Fig. 24. Experimental results of vibration response and FFT spectrum at the horizontal and vertical directions of bearing 1 and 2 at different shaft
speeds (3000, 4000 rpm). Time records in horizontal and vertical directions are shown in panels (a to d) and (i to l), while the FFT spectra in horizontal
and vertical directions are displayed in panels (e to h) and (m to p). FFT, fast fourier transform.
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and misalignment, leading to increased centrifugal
forces and challenging control of the rotor-bearing
system.

4. Conclusions

In this study, the nonlinear dynamic response of
the rotor-bearing system is investigated using a
finite-element model and validated through exper-
imental testing. The rotor's behavior and vibration
characteristics are analyzed through orbit diagrams,
vibration amplitudes, time-domain responses, and
FFT spectra. The study reveals the significant impact
of rotational speed on the rotor-bearing system
response. Below the critical speed, the system
behavior remains consistent across various ana-
lyses, including first-order, second-order, nonlinear

analyses, and experimental observations. However,
as the speed increases, notable changes occur in the
system's behavior, leading to phenomena such as
whirling, whipping, and subsynchronous vibrations.
These conclusion points were derived from the
search results.

(1) Using linear fit polynomial equations to
calculate the bearing coefficients adds a novel
value by facilitating the investigation process
of the rotor-bearing system behavior. This
reduces the time required to calculate the
bearing coefficients by 50%. See all equations
in Appendix C.

(2) The theoretical model effectively assesses the
rotor-bearing system's unbalance and is
corroborated by experimental tests conducted

Fig. 25. Experimental results of vibration response and FFT spectrum at the horizontal and vertical directions of bearing 1 and 2 at different shaft
speeds (5000e6000 rpm). Time records in horizontal and vertical directions are shown in panels (a to d) and (i to l), while FFT spectra in horizontal
and vertical directions are displayed in panels (e to h) and (m to p). FFT, fast fourier transform.
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on the setup, so the stability of the rotor-
bearing system is maintained at speeds below
the critical speed, while instability becomes
pronounced at high speeds.

(3) The theoretical and experimental analyses
confirm specific resonant speeds: 5107 rpm in
the theoretical analysis and 5850 rpm in the
experimental analysis. Furthermore, vibration
signals and FFT spectra provide insights into
synchronous and subsynchronous vibration
zones.

(4) The experimental test rig offers the advantage
of tracking rotor orbit at any location using
proximity sensors, enabling in-depth study of
rotor behavior. It illustrates the oil whip phe-
nomenon. The dynamic behavior of the rotor-
bearing system is analyzed during both the
acceleration and deceleration phases of shaft
rotational speeds.

For future works, the author suggests the
following in the area of rotor-bearing systems.

(1) Experimentally analyze the behavior and dy-
namic characteristics of a high-speed rotor-
bearing system at speeds exceeding 10 000 rpm.

(2) Experimentally study the effect of applying
radial load on the rotor shaft.

(3) Use ANSYS in the mathematical model to
study the rotor-bearing system behavior.
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Appendix A. Characteristics of Journal
Bearings

The following Reynolds equation (Qiu and Tieu,
1995) can be solved to estimate the pressure of oil
film in the journal bearing seen in Figure (A.1)
panels a, b, c, and d:

1
R2

v

vf

�
rh3

12m
vp
vf

�
þ v

vz

�
rh3

12m
vp
vz

�
¼U

2
vrh
vf

þ r
vh
vt

ðA:1Þ

Figure A.1: Circular journal bearing: (a) journal bearing coordinates, (b) perturbed journal within a bearing, represented with angular and Cartesian
coordinates, (c) oil film meshing, (d) grid points used in the half-step finite-difference method.
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Here, p is the pressure of the fluid film; h is the
fluid film thickness; f is the angular coordinate; U is
the rotational speed of the shaft; t is the time; and z
is the axis of the shaft. The dimensionless Reynolds
equation can written as follows:

v

vf

�
H3vP

vf

�
þ v

vZ

�
H3vP

vZ

�
¼vH

vf
þ 2

vH
vt

ðA:2Þ

here, H ¼ h=c; c is the radial clearance, Z ¼ z= R,
P ¼ p

6mU

�
c
R

�2
; and t ¼ Ut.

H¼1þ 3:cos ðfn �4Þ¼1þ 3:cos ðfÞ ðA:3Þ

where, 3 ¼ c=R, and

Hz1þð30þd3Þ cosðf0 � d4Þ¼1

þ ð30þ d3Þ ½cos f0 cos d4þ sin f0 sin d4� ðA:4Þ

when d4 is small, cosðd4Þ ¼ 1� d42

2 , and sinðd4Þz d4.
Then,

H¼H0þdX:sin fn � dY:cos fnþ
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where,
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The second-order approximation of the perturbed
oil layer thickness in terms of Cartesian coordinates

can be expressed as follows using equations (A.7) in
equation (A.8):

P¼P0 þ vP
vX

dXþ vP
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vX0 dX

0 þ vP
vY0 dY

0 þ 1
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where ðP0Þ represents the steady-state pres-
sure; the variables X;Y;X0; and Y0 are defined as x

c;
y
c;

x0
Uc , and

y0

Uc respectively. The prime symbol (0) denotes
the derivative with respect to t, where t ¼ Ut
To calculate the dimensionless bearing forces FX

and FY , the following equations are used:

FX ¼
Z L

R

0

Z 2p

0
�P ðsin fnÞdfndZ ðA:10Þ

FY ¼
Z L

R

0

Z 2p

0
�P ðcos fnÞdfndZ ðA:11Þ

where the dimensionless bearing forces in the X and
Y directions are defined as

FX ¼ Fx
Wb

¼ FX
Wb

ðA:12Þ

FY ¼
Fy
Wb

¼ FY
Wb

ðA:13Þ

where ðWbÞ is the bearing loa, and Wb ¼ L=D
3)p)S as

shown in Fig. 2:
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and
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where b ¼ X;Y.
The eight first-order bearing stiffness and damp-

ing coefficients can be obtained from
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The six second-order stiffness and eight damping
bearing coefficients are
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0

Z 2p

0

�� Pbg ðsin fnÞdfndZ


Wb

� ðA:20Þ

KYbg¼
Z L

R

0

Z 2p

0

�� Pbg ðcos fnÞdfndZ


Wb

� ðA:21Þ

CXbg¼
Z L

R

0

Z 2p

0

�� Pbg0 ðsin fnÞdfndZ


Wb

� ðA:22Þ

CYbg¼
Z L

R

0

Z 2p

0

�� Pbg0 ðcos fnÞdfndZ


Wb

� ðA:23Þ

where each of b;g can be either X;Y.

Appendix B. Finite-Element Matrices

In this appendix, matrices representing the mass,
gyroscopic effects, and stiffness of a specific me-
chanical system are presented. The explicit form of
the mass matrix is given by the following
expression:

½M�¼r:A:L
420

)
2
66666666666664

156 0 0 22l 54 0 0 �13l

0 156 �22l 0 0 54 13l 0

0 �22l 4l2 0 0 �13l �3l2 0

22l 0 0 4l2 13l 0 0 �3l2

54 0 0 13l 156 0 0 �22l

0 54 �13l 0 0 156 22l 0

0 13l �3l2 0 0 22l 4l2 0

�3l 0 0 �3l2 �22l 0 0 4l2

3
77777777777775

ðB:1Þ

The matrix representing gyroscopic effects is as
follows:

½G�¼
r:p:

�
d
2

�4

120
)

2
66666666666664

0 36 �3l 0 0 �36 �3l 0

�36 0 0 �3l 36 0 0 �3l

3l 0 0 4l2 �3l 0 0 �l2

0 3l �4l2 0 0 �3l l2 0

0 �36 3l 0 0 36 3l 0

36 0 0 3l �36 0 0 3l

3l 0 0 �l2 �3l 0 0 4l2

0 3l l2 0 0 �3l �4l2 0

3
77777777777775

ðB:2Þ

Finally, the stiffness matrix is defined as

½K�¼E:I
L3

)

2
66666666664

12 0 0 6l �12 0 0 6l
0 12 �6l 0 0 �12 �6l 0
0 �6l 4l2 0 0 6l 2l2 0
6l 0 0 4l2 �6l 0 0 2l2

�12 0 0 �6l 12 0 0 �6l
0 �12 6l 0 0 12 6l 0
0 �6l 2l2 0 0 6l 4l2 0
6l 0 0 2l2 �6l 0 0 4l2

3
77777777775

ðB:3Þ

Appendix C. Linear fit polynomial equations
The fitting equation for bearing coefficients in

terms of eccentricity ratio:
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3¼
�
1:0021þ 4:72)108 S14 � 1:88)109 S13

þ 3:31)109 S12 � 3:43)109 S11þ 2:33)109 S10

� 1:088)109 S9þ3:59)108 S8 � 84264000 S7

þ13914000 S6 � 1564400 S5þ111340 S4

� 4258:2 S3þ74:666 S2 � 7:897 S

ðC:1Þ
Kxx¼

�
1:7086þ480040 314 � 3144700 313þ9282900 312

� 16320000 311þ19030000 310 � 15513000 39

þ9082000 38 � 3862900 37þ1194700 36

� 266530 35þ42172 34 � 4605:2 33þ333:82 32

� 14:878 3

ðC:2ÞKxxx¼
�
260:59þ143140000 314 � 954910000 313

þ2:89)109 312 � 5:19)109 311þ6:24)109 310

� 5:27)109 39þ3:23)109 38 � 1:5)109 37

þ475470000 36 � 114140000 35þ19671000 34

� 2367800 33þ190600 32 � 9547 3

ðC:3Þ

Cxx¼
�
158:89þ86507000 314 � 575160000 313

þ1:73)109 312 � 3:12)109 311þ3:72)109 310

� 3:12)109 39þ1:90)109 38 � 847080000 37

þ277360000 36 � 66286000 35þ11386000 34

� 1369200 33þ110600 32 � 5612:2 3

ðC:4Þ

Cxxx¼
�
22:781þ17098000 314 � 109070000 313

þ314200000 312 � 540890000 311

þ620640000 310 � 501300000 39þ293370000 38

� 126100000 37þ933980000 36 � 9234000 35

þ1534800 34 � 177970 33þ13758 32 � 658:59 3

ðC:5Þ
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